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Abstract 

In this research paper we have mentioned some areas where the fixed points are important. In this 

research paper we have explored following areas of pure and applied Mathematics where the fixed 

points have significant appearance. 

1. Number Theory. 

2. Numerical Analysis. 

3. Complex Analysis. 

4. Linear Algebra. 

5. Transformational Geometry. 
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I. INTRODUCTION 
 

Fixed points appear in various branches of Mathematics and play a key role in proving some 

crucial results. For example the vector of PageRank values of all web pages is the fixed point of 

a linear transformation derived from the World Wide Web's link structure. This and such a very 

important results in turn are then basis of many applications in engineering, science, social sciences 

like economics, computers etc. This research paper is a survey of the fields where fixed points are 

useful. 
 

II. FIXED POINTS 
 

Definition 2.1 [8]. Let X be a set and :f X X be a map from X into itself. A point x  is called a 

“Fixed Point” of f  if ( )f x x . 

Fixed points occur at various situations in mathematics. Following are some instances where fixed 

points show their presence and also play very important role. 
 

III. FIXED POINTS IN NUMBER THEORY 
 

Fermat’s little theorem in number theory is one of the celebrated results. It states as follows. 

Theorem 3.1 (Fermat). If q  is a prime then qk k(mod q ) positive integers k . 

The Fermat’s theorem and related results in number theory are useful in proving facts about periodic 

points in dynamical systems [1, 3]. Many proofs of Fermat’s theorem are available in the literature. 

See [2, 4, 5] to see some of the proofs of this theorem. Fixed point technique can be used to establish 

the Fermat’s little theorem. The proof of Fermat’s theorem is a simple corollary of counting the fixed 

points of a function that we define below.  

Definition 3.1 [6]. The function f from [0,1]into[0,1]  as follows. 
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https://en.wikipedia.org/wiki/PageRank
https://en.wikipedia.org/wiki/Linear_transformation
https://en.wikipedia.org/wiki/World_Wide_Web
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Example 3.1. If 6k   we get above function as, 

6
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The graph of this function is as follows. 

 
 

Figure 3.1. The line intersects the graph of the function 
6 ( )f x six times. 

 

It can be easily observed that the graph of the function in the example 3.1 intersects line 

x y exactly 6 times, producing 6 fixed points of the function
6 ( )f x . 

Lemma 3.1 [6]. The function ( )kf x  
has exactly k  number of fixed points. The function

2 ( ) ( )( )k k kf x f f x has exactly 2k fixed points, the function 3 ( ) ( )( )k k k kf x f f f x has exactly 3k

fixed points and in general the function ( ) ( ..... ) ( )

n times

n

k k k k kf x f f f f x has exactly nk  fixed 

points.  

Definition 3.2 [6]. Let ( )kf x be the function defined in the definition 3.1. Then “fixed point of ( )kf x of 

period n ” is a point [0,1]x  for which ( )n

kf x x . That is the fixed point of ( )kf x of period n  is a 

fixed point of the function ( )n

kf x .   Then we also call n  as a “period” of x . 

Definition 3.3 [6]. A “minimal period” of a fixed point [0,1]x  is the value of n  such that

( ) ,0l

kf x x l l n     and ( )n

kf x x . 

Notation 3.1. We denote by ( )n kf  the number of fixed points of minimal period n  for the function

kf  

Definition 3.4. For each point [0,1]x we define “orbit of x ” to be the set 2, ( ), ( ),.....k kx f x f x . 
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Remark 3.1. If [0,1]x  has a period n , then the orbit x  of contains at most n  distinct elements. 

Definition 3.5. If [0,1]x  has a period n , then we know that the orbit of x  contains at most n

distinct elements. Such orbits are called n  cycles. 

Definition 3.6. If [0,1]x  has minimal period n , then the orbit of x  contains n  distinct elements:
2 3 1, ( ), ( ), ( ),....., ( )n

k k k kx f x f x f x f x . Such orbits are called “minimal n  cycles”. 

Lemma 3.2. The following hold. 

(i) If 
0 [0,1]x   is a fixed point of period n  that has minimal period m , then m n . That is n  is 

divisible by m (or m  divides n ). 

(ii) Minimal m cycles are either mutually identical or disjoint. That is any two minimal m  

cycles are either have all the elements common or no element common. 

(iii) For all 1n  ,
nn  provided

n is finite. That is 
n  is divisible by n . 

Lemma 3.3. The following hold. 

(i) The function ( )kf x  defined in definition 3.1 has nk fixed points of period n . 

(ii) For all integers 1k  and all integers 1n  , ( )n

m km n
k f  . 

Theorem 3.2. For all integers 2k  and all primes q , (mod )qk k q . 

Proof. We know that if n  is a prime integer then the only divisors of n  are 1 and n  itself. By lemma 

3.3, 1( )q

m k qm q
k f      . 

Now 
1   Number of fixed points of 

kf  of period 1=Number of fixed points of 1

k kf f = k . 

Hence q

qk k   . 

That is q

qk k   . 

But 
q  is divisible by q  by lemma 3.2. Thus (mod )qk k q . 

Remark 3.2. Thus Fermat’s theorem for 2k  is a simple consequence of counting fixed points of

( ....... ) ( )

q times

q

k k k k kf f f f f x . 
 

IV. FIXED POINTS IN NUMERICAL ANALYSIS 
 

Finding roots of the equation of the type ( ) 0f x   is one of the central problems in numerical 

analysis. 

Definition 4.1. A “root” of the function ( )f x  is a value r  of x  such that ( ) 0f r  . We also say this 

as r  is a “solution” of the equation ( ) 0f x  . 

Lemma 4.1. r  is a root of the function ( )f x  if and only if r is a fixed point of the function 

( ) ( )g x x f x  . 

Proof. Suppose r  is root of the function. Then we get ( ) 0f r  . 

( ) ( ) 0g r r f r r r      . 

Thus r  is fixed point of ( )g x . 

Conversely suppose r  is a fixed point of ( )g x .  

Thus ( )g r r . 

That is ( )r f r r  . 

Thus ( ) 0.f r   

So r  is a root of the function ( )f x . 

The lemma is thus proved. 

Remark 4.1. Problem of finding a root of the function ( )f x  thus reduces to finding a fixed point of 

the function ( ) ( )g x x f x  . 
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Example 4.1. Find the root of the function 3 2( ) 6 11 6f x x x x    . 

Solution. Consider the function  3 2 3 2( ) ( ) 6 11 6 6 10 6.g x x f x x x x x x x x             

We observe that 1,2,3x   are three fixed points of ( )g x . 
3 2

3 2

3 2

(1) 1 6.1 10.1 6 1 6 10 6 1,

(2) 2 6.2 10.2 6 8 24 20 6 2,

(3) 3 6.3 10.3 6 27 54 30 6 3.

g

g

g

          

          

          

 

 

 
 

Figure 4.1. The graph of the function g( )x intersects the line y x  thrice. 
 

Hence 1,2,3x   are the roots of the equation 3 2( ) 6 11 6.f x x x x     

To find the fixed points of the function ( ) ( )g x x f x   we shall use the iteration method given as 

under. 

Step 1. Choose a point 
0x  that is approximately near to the fixed point of ( ).g x  

Step 2. Compute 
1 0 2 1 1( ), ( ),....., ( ),.....n nx g x x g x x g x     . 

Step 3. If the sequence  
0nx


 converges then it has the limit as a fixed point of ( )g x . 
 

V. FIXED POINTS IN COMPLEX ANALYSIS 
 

Definition 5.1(Mobius Transformation) [7]. A transformation    :M       defined by 

1 2

1 2 3 4 1 4 2 3

3 4

( ) , , , , , 0
a z a

M z a a a a a a a a
a z a


   


 is called a “Mobius Transformation”. 

Definition 5.2 (Fixed Point of Mobius Transformation) [7]. A point 
0z  is called a fixed point of a 

Mobius transformation 1 2

3 4

( )
a z a

M z
a z a





if 1 0 2

0 0

3 0 4

( )
a z a

M z z
a z a


 


. 

We shall now concentrate on the number of fixed points of a Mobius transformation. 

Theorem 5.1. A Mobius transformation has at most two fixed points. 

Proof. Case 1. If 
1 4 2 31, 0a a a a     then the Mobius transformation becomes 

1. 0
( )

0. 1

z
M z z

z


 


. This is an identity transformation. In this case Mobius transformation has all the 

points as its fixed points. 

Case 2. Suppose now that none of the Mobius transformations are identity transformations. Also 

suppose that 0z  . We write a Mobius transformation as 
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2

1

4

3

( ) , 0.

a
a

zM z if z
a

a
z



 



 

Taking limit as z   that is 
1

0
z
  we get 

1

3

lim ( )
z

a
M z

a
 . 

If 
3 0a   then we get lim ( ) .

z
M z


   

We write this as ( )M    . 

Thus if 
3 0a  , then   is a fixed point of a Mobius transformation. 

Conversely suppose that   is a fixed point of a Mobius transformation. 

Thus 

2

1

4

3

( ) lim
z

a
a

zM
a

a
z





   



. 

Therefore 1

3

.
a

a
   

Thus 
3 0.a   

Thus a Mobius transformation has a point   as a fixed point if and only if
3 0a  . 

Case 3. Suppose   is a fixed point of a Mobius transformation. Then 
3 0.a   

Then the Mobius transformation becomes 

1 2 1 2

4 4 4

( )
a z a a a

M z z
a a a


   . 

Letting 2

4 1

a
z

a a



 we get, 

2 1 2 2 2 1 2 1 4 1 2 4 2

4 1 4 4 1 4 4 4 1 4 4 1 4 4 1 4 1

1 .
a a a a a a a a a a a a a

M
a a a a a a a a a a a a a a a a a

        
             

            
 

Thus if  is a fixed point of a Mobius transformation then 2

4 1

a
z

a a



 is also a fixed point of that 

Mobius transformation. We note that if 
1 4a a  then that point is   itself. 

Case 4. Now suppose that   is not a fixed point of a Mobius transformation ( )M z . Then 
3 0.a   

Thus 4

3

.
a

a
   

Let 
0z  be a fixed point of ( )M z that is 

0 0( )M z z . 

Now 4

0

3

a
z

a
   because if 4

0

3

a
z

a
  then 

4

1 2

34

0

3 4

3 4

3

( ) .

a
a a

aa
M z M

a a
a a

a

 
  

   
     

  
  
 

 

Thus 
0z    and then 

3 0.a  This is a contradiction. 
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Consider 
3 0 4a z a , which is not 0 because 4

0

3

a
z

a
  . 

Multiply by 
3 0 4a z a to 1 0 2

0 0

3 0 4

( )
a z a

M z z
a z a


 


 we get, 

1 0 2 0 3 0 4

2

1 0 2 3 0 4 0

2

3 0 4 1 0 2

( )

( ) 0

a z a z a z a

a z a a z a z

a z a a z a

  

   

    

 

The last equation is quadratic equation in 
0z . 

This equation has either 

(1) Two real solutions or 

(2) One real solution or 

(3) Two complex conjugate solutions. 

These solutions are the fixed points of ( ).M z  

Remark 5.1: - Thus a non-identity Mobius transformation has at most two fixed points. Any Mobius 

transformation which has three or more fixed points then the Mobius transformation is identity 

transformation. Then the Mobius transformation has all the fixed points. 
 

VI. FIXED POINTS IN LINEAR ALGEBRA 
 

The role of fixed points in linear algebra and its’ applications is illustrated in the following diagram. 

 
 

Figure 6.1. Brower’s Fixed Point Theorem is basis for the proof of Perron-Frobenius theorem which has many 

important applications. 
 

Definition 6.1 (Closed Unit Ball in n ). A Closed Unit Ball n  in n  is defined as the set 

 
1

2 2 2 2 2
1, 2 3 1 2 3( , ,....., ) / ,1 , ..... 1n

n i nu u u u u u i n u u u u u
 

            
 

 

Theorem 6.1 (Brower Fixed Point Theorem) [8]. Any continuous map f  from the closed unit ball 
n  in n  to itself has a fixed point. 

Before we actually state and prove the Perron-Frobenius theorem in linear algebra, by using Brower 

fixed point theorem, we define the followings. 

Definition 6.2. A n n  matrix  ijA a  is said to be non-negative (respectively positive) and we 

write 0A   (respectively 0A  ) if 0ija   (respectively 0ija  ) for all ,i j . 

Definition 6.3. A vector X  in n  is called a non-negative (respectively positive) and we write 

0X   (respectively 0X  ) if X  is a non-negative (respectively positive) when regarded as a 

matrix. 

Definition 6.4. The set of all eigenvalues of a matrix is called its “spectrum”. 

Definition 6.5. The largest value of the modulus of an eigenvalue of a matrix A  is called the 

“spectrum radius” of A . It is denoted by ( )r A . 

Brower Fixed 
Point Theorem 

Perron-Frobenius 
Theorem 

Probabilty 
Theory 

Dynamical 
Systems 

Economics 

Demography by 
Leslie's Age 

Distribution Model 

Mathematics behind 
Internet Search 

Engines Like Google 
etc. 

Ranking of 
Professional 

Tennis 
Players etc. 
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Lemma 6.1. If 0A  and u  is an eigenvector of of A  with 0u   , then 0u  . 

Now we state and prove Perron-Frobenius theorem. 

Theorem 6.2 (Perron-Frobenius Theorem). Let ( )ijA a  be a real strictly positive n n  matrix. 

Then 

(1) A  has a positive eigenvalue   with ( )r A  . 

(2)   is unique such an eigenvalue. 

(3) The corresponding eigenvector is also strictly positive. 

(4) A  has no other non-negative eigenvector. That is all the other eigenvectors are not non-negative. 

Proof of (1) and (2). Let Sn be the unit sphere with the centre origin in n . 

Define  1 2( , ,....., ) / 1, 0, 1,2,3,.....,n iS u u u u u u for all i n     . 

It is easy to check that S  is homeomorphic to the closed unit ball 1n  in 1n . 

Define a function :f S S  by ( )
Au

f u
Au

  . This function is clearly continuous. So we can apply 

Brower’s fixed point theorem on f . By applying Brower’s fixed point theorem on f we get a fixed 

point of f , say 
0 0,1 0,2 0,3 0,( , , ,....., )nu u u u u .Thus we have 

0

0 0

0

( )
Au

f u u
Au

  . 

Let 
0Au  . So that we get 0 0Au u . Thus   is a eigenvalue of the matrix A . 

Clearly 0  . 

Proof of (3). By the definition of the set S , all the components of 0u  are non-negative and 0A  . 

Thus 0 0Au  (see lemma 6.1) and hence the eigenvector 0 0u  . 

Proof of (4). Next we shall show that   has no other eigenvector. This we show by contradiction 

method. Suppose that there is another eigenvector 
0 0,1 0,2 0,3 0,( , , ,....., )nu u u u u     , independent of 0u . As 

we know 0A   and 0  , by the similar argument as above we get 0 0u  . 

Let 
0, 0,

0, 0,

min
i k

i

i k

u u
t

u u
 

 
 for some .k Consider the vector 0 0 0u u tu   . 

Then we have 0 0 0 0 0 0 0 0 0 0( ) ( )Au A u tu Au tAu u t u u tu u                 . Therefore 0u  is also 

an eigenvector of A  corresponding to the eigenvalue  . But 
0,

0, 0, 0, 0,

0,

0
k

k k k k k

k

u
u u tu u u

u
      


. 

This is a contradiction to the fact that 0u is an eigenvector of A  with the eigenvalue   since 0u  and 

0u  are linear independent. Thus A  has no other non-negative eigenvector. 

Definition 6.6 [8]. A n n  matrix is called “Markov matrix”/“Stochastic matrix” if it is non-negative 

and the sum of the elements of each column is 1. 

Theorem 6.3 [8]. A Markov matrix has always an eigenvalue 1 and all other eigenvalues are in 

absolute value smaller than or equal to 1. 

Perron-Frobenius theorem and theorem 6.3 are become important in application in computers and 

various applications as illustrated in figure 6.1.  We shall consider one of the many important 

applications shown in figure 6.1. 

Example 6.1. Application of Brower’s fixed point theorem to Google. 

Twenty first century is the era of information and technology. Large information is available on a 

single click on computers. Also smart phones enable us to browse any information at our finger tips. 

However for a layman it is question of wonder that how a given query is answered on a computer 

with in a fraction of seconds. Today search engines (like Google, Yahoo) are like a huge library. 

Massive information is stored in different formats like PDF, DJVU etc. Anybody can add any 
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information at any time in any format to this library. And the important thing is that there is no 

management and no librarian to monitor the transactions. Its’wonderful that under such situations 

one can find a particular document in few seconds. 

Google works as follows: 

1. Explore the web and locate the web pages which have public access. 

2. Then the engine index the data found in above step. 

3. On the probability basis the engine rate the importance of each page in the data base, so that more 

important pages are appear on the screen of a computer. 

We explain in detail the last step 3. Google uses the system PageRank to rank the importance of a 

webpage. This system is based on the following ideas. 

 On internet a page is linked to another page. For example a Facebook page has a link that takes 

us to a Twitter page. This we can imagine as if one page votes for another page.  

 A web page is ranked higher than another if there are more links to it. That is a page is ranked 

higher if more pages votes for it. 

 Further one vote becomes more important than the other if it is obtained from more important 

page. 

To understand the above concept of calculating the rating of a web page we take one example. Let 

the webpage P has pages V1, V2, V3, ….., Vn as its’ voter pages. Let #P be the number of votes 

given by page P to other webpages. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Votes casted to and casted by the webpage P 
 

Further suppose the webpage Vj casts nj votes to other pages and out of j votes only one is casted for 

the page P. Then it increases the importance of the page by PR(Vj)/nj. Here PR(Vj) is the PageRank 

of the page Vj. Therefore assume that the internet has m pages P1, P2, P3, ….., Pm. Let Nk be the 

number of outgoing links from Pk. Then 

( )
( ) , 1,2,3,.....

j k

PR Pj
PR Pk k m

Nj

  .        (1) 

We also note that 

(1) Different PageRank form a discrete probability distribution (or probability density function) over 

the web pages. Hence Sum of all PageRanks = 1, 

(2) PR(Pk) corresponds to the principal eigenvector of the normalized link matrix of the web. 

Therefore it can be calculated from above algorithm. 

Example 6.2. Suppose a web page contains four pages P1, P2, P3, P4. The links from one page to 

other are given in the following figure. 

 
 

 

 

 

 

 

 

Figure 6.3. Arrows shows the links between the web pages 
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Let PR(P1) = x, PR(P2) = y, PR(P3) = z, PR(P4) = w. Then we get 

x = z/1+w/2, y = x/3, z = x/3+y/2+w/2, w = x/3+y/1. 

Therefore if we consider the vector  

x

y
X

z

w

 
 
 
 
 
 

 

We have the system AX X , with 

1
0 0 1

2

1
0 0 0

3

1 1 1
0

3 2 2

1 1
0 0

3 2

x x

y y

z z

w w

 
 
 

   
 

   
 

    
   

 
   

     
 
 
 

 

Here A has eigenvalue 1 and its unique corresponding eigenvector from Perron-Frobenius theorem 

6.2 (which we have proved by using Brower’s fixed point theorem). This is 

12

4

9

6

X

 
 
 
 
 
 

. 

Normalizing in order to have stochastic vector we get 

12

41

931

6

X

 
 
 
 
 
 

. 

This ranking makes the page P1 the most important web page. 
 

VII. FIXED POINTS IN TRANSFORMATIONAL GEOMETRY 
 

Definition 7.1 (Isometry). “Isometry” is a distance and angle preserving transformation. So an 

isometry also preserves shapes. 

Definition 7.2 (Fixed Point of an isometry). The fixed points of an isometry are those points in the 

plane whose images are themselves. 

Remark 7.1. The number of fixed points of isometries helps us to characterize all the isometries. 

Various types of isometries and their characterization by the number of fixed points is shown by the 

following table. 
Table 7.1. Chart showing the number of fixed points of an isometry geometrical transformation 

Sr. No. Isometry Definition Figure Number of fixed points 

1 Translation Under translation a point ( , )A x y  

is translated to the point 

( , )B x a y b   

 No fixed points or all the 

points are fixed if 

0, 0a b  In this case 

translation becomes an 

identity translation 

A(x,y) 

B(x+a,y+b) 
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2 Rotation Under rotation about an angle   a 

point ( , )A x y is translated to the 

point 

( cos sin , sin cos )B x y x y    

 

 Roration has unique 

fixed point that is its 

point of rotation. 

3 Reflection Under the reflection over X axis a 

point ( , )A x y is translated to the 

point ( , )B x y . And under the 

reflection over Y axis point 

( , )A x y is translated to the point 

( , )B x y . 

 All the points on the line 

of reflection are fixed. 

 

VIII. CONCLUSION 
 

From this research article it is now crystal clear that the fixed points are very useful in 

Mathematics. Analysis of mappings and their fixed points enable us to successfully handle many 

situations in pure and applied Mathematics. Main braches of Pure Mathematics like Real Analysis, 

Complex Analysis, Number Theory and branches of Applied Mathematics like Linear Algebra, 

Numerical Analysis utilise fixed points and related theorems.  So it is essential to explore more on 

fixed points. In the coming research paper we shall further explore the areas like economics, game 

theory etc. 
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